
Measuring and relating self-efficacy in java programming among computer science
undergraduates in the South-West, Nigeria

Dr. Josiah Owolabi
National Open University, Victoria Island, Lagos

Abstract
The role that self-efficacy plays in the choice, effort as well as perseverance of a learner makes it
very important to measure the self-efficacy scores in JAVA programming (SESJP) of computer
science undergraduates and also to investigate its relationship with some selected variables
(background in general programming language (C++), number of programming courses taken and
institution types). This study made use of survey design of a correlational type. Two hundred and
fifty-four (254) computer science undergraduates from four universities in the South-West, Nigeria,
were selected using purposive sampling. Data was collected using a Self-Efficacy in Java
programming scale (SEJPS) that contains thirty-two (32) items. The instrument was validated using
Cronbach alpha approach that yielded a coefficient of 0.96. Descriptive statistics, Correlation and
regression were used for data analysis. The mean and standard deviation scores for SEJPS were
found to be (134.89) and SD (45.39) respectively. The mean of 134.89 out of the maximum
obtainable score for the scale which is 224,translates to 60.22% and this is above average. The
number of programming courses taken before JAVA programming class as well as their background
in C++ were found to significantly predict self-efficacy in JAVA programming. It was therefore
recommended that computer undergraduates be made to take more prerequisite courses (C++
inclusive) before exposure to JAVA programming.

Key Words: Self-Efficacy, JAVA Programming, Measuring, , Computer Undergraduates

x

Introduction

Learning how to write programs is vital in the
training and development of computer
professionals. Therefore, computer science
undergraduates are expected to take and pass
some programming courses during the course of
their study. According to Jenkins (2001),
programming is “the process of taking a
problem specification written in plain language,
understanding it, devising a solution, and then
converting the solution into a correct computer
program (usually expressed in some special-
purpose programming language)”. Java has
been chosen for this study because it is one of the
programs that is still relevant in the industries
and also works on the web browser.

Programming cannot be done except with great
efforts and perseverance. A programmer
therefore must be persevering and committed.
People's belief and judgement about their
capabilities are better at predicting perseverance
and commitment compared with their actual

capability of accomplishing the task. This belief
and judgement about one's capability to perform
a task is what is called self-efficacy. Bandura
(1977) submits that self-efficacy is an important
psychological construct that requires attention in
research because of its influence on (i) how
individuals choose the activities they take part
in; (ii) the extent to which they will make effort
in the performance of a task and (iii) the length of
perseverance in the face of difficulties
encountered in completing that task. High self-
efficacy has been seen to enhance motivation,
make people to set themselves higher goals, put
in more efforts, show more resilience and
persistence more than those with low self-
efficacy (Cassidy & Eachus, 2002; Schwarzer,
2004).

Computer self-efficacy (CSE) is an off-shoot of
the general concepts of self-efficacy which
refers to an individual's perception of his ability
to use computer to perform a computing task
successfully (Bandura, 1996).According to
Hassan (2003), computer self-efficacy (CSE) is

8 AJB-SDR Vol. 1, No 1, 2019

key in the determination of computer related
ability (including programming). Since self-
efficacy has been proven to be a determinant of
computer ability, the need to carry out an
accurate measurement of the concept of self-
e f f i c a c y b e c o m e s i m p e r a t i v e . J a v a
Programming Self-efficacy, which is a special
type of self-efficacy relating to programming
using JAVA language was investigated in this
study.

Sometimes, the problem of measurement is not
necessarily with statistical analysis but with
operationalisation. This is especially when a
quality of interest cannot be measured directly.
The concept of self-efficacy is an example, as
there is no way it could be measured directly. In
this study, it has been operationalised in such a
way that respondents are required to rate their
confidence on a list of JAVA programming
related tasks using a scale of 1(meaning not
confident at all) to 7 (meaning absolutely
confident).

Self-efficacy is influenced by several other
variables as evidenced in literature (Beas &
Salanova, 2006; Cassidy & Eachus, 2002).
These variables include: the number of
programming courses, C++ background and
institutional type. On number of programming
courses, Jegede (2009), found no significant
relationship between Java programming self-
efficacy and the number of programming
courses taken. He, however, established that
Java programming self-efficacy is significantly
predicted by the number of programming
courses offered by students. In an earlier study,
Ramalingan, La Belle and Wiedenbeck (2004)
established that programming experience
(which could also result from the number of
programming courses earlier taken) influenced
self-efficacy for programming.This confirmed
the claim of (Bandura, 1986), that self- efficacy
perceptions are developed gradually with the
attainment of skills and experience.

Studies on the influence of background in C++
on JAVA programming self-efficacy seems to be
rare. Historically, JAVA programming language
was developed from the C++ programming
language. This therefore could explain the

reason why Sconberg and Dewar (2008)
asserted that JAVA should not be introduced as
an introductory programming course, It was
expected to be taken after the students have had
some experiences in prerequisite courses like
the C++ for which it was an offshoot. In some
universities in the South-West Nigeria, students
are required to take it before taking JAVA
programming as a course. These are universities
who share the same opinions with Sconberg and
Dewar (2008). Some other universities however
do not. The implication is that background in
C++ varies among the computer undergraduates
who take JAVA programming as a course of
study.The study therefore sought to test
relationship between background in C++ and
JAVA programming self-efficacy.

The type of institution was found in literature to
affect the student's' academic self-efficacy. In a
study carried out by Gafoor (2012) on the
influence of school on academic self-efficacy,
findings showed that the private secondary
schools sampled have significantly higher self-
efficacy when compared with their counterparts
in public secondary schools. Bututcha (2013) in
a related study found beginning teachers in
private schools to be more self-efficacious in
instructional strategies as well as overall self-
efficacy when compared with their counterparts
in the public schools. Capa (2005), in another
study, found a similar result. This study
therefore sought to study the relationship of the
institution type and self-efficacy in a specific
domain (JAVA programming).

Statement of the problem
Programming requires great efforts and
perseverance. Great efforts and perseverance in
a task like programming could be exhibited only
when one has the belief in his capability to
achieve success in it. While there are many
computer users, computer programmers
responsible for software development appear
scarce. The scarcity is not because enough
computer scientists are not trained computer
scientists but probably not many of them take to
programming as a profession after graduation.
The possible explanation for this is the fact that
they may not have confidence in their capability
to write complicated programs. This confidence

9 AJB-SDR Vol. 1, No 1, 2019

in their capability, otherwise known as self-
efficacy is what this study sought to investigate.
The study sought to specifically measure the
JAVA programming self-efficacy possessed by
the undergraduate computer science students in
the South-West Nigeria and also to determine its
relationship with a number of programming
courses taken earlier, background in C++ and
institution type.

Research Questions
The answers to the following research

questions were provided by the study:
1. What are the measures of Self-efficacy

in JAVA programming possessed by
computer science undergraduates?

2. What type of relationship exist among
background in C++, the number of
programming courses taken before
entering Java programming class, type
of institution and Self-efficacy in Java
programming?

3. How much of the variance in Self-
efficacy in Java programming possessed
by computer science undergraduates is
accounted for by background in C++,the
number of programming courses taken
before entering Java programming class
and the type of institution?

4. How much of the Java programming self
e ff i cacy o f compute r sc i ence
undergraduates is associated with
background in C++, number of
programming courses taken before
entering Java programming class and
institution type?

Methodology
Purposive sampling was used for the selection of
participants for the study because the researcher
is interested in those public universities in the
S o u t h - We s t e r n N i g e r i a w h e r e J a v a
programming language is taught the
undergraduate level. At the time of the study,
five universities met the criteria stated above.
One of the five was used for the validation of the
instruments while the remaining Universities
were used for the main study. All the computer
science undergraduates that had been taught
Java programming that were available and
willing to participate in the study participated in
the study. After careful scrutiny, a total of 254
questionnaires that were properly filled were
used for the study.
Data was collected using Self-Efficacy in Java
programming scale developed by Askar and
Davenport (2009), by adapting the C++
developed by Ramalingam and Wiedenbeck
(1998). The scale consisted of 32-items
presented in 7- Likert format from 1 (Not
confident at all) to 7 (Absolutely confident); the
participants were expected to rate their level of
confidence in the items highlighted using the 7-
Likert format. The original reliability coefficient
found by Askar and Davenport (2009) was
found to be 0.99. The reliability coefficient
found from the pilot in this study however was
0.96. Data was analysed using descriptive
statistics (Mean and Standard Deviation),
Pearson Product Moment Correlation (PPMC)
Coefficient as well as Linear Multiple
Regression.

10 AJB-SDR Vol. 1, No 1, 2019

S/N Item RATING OF CONFIDENCE

1 2 3 4 5 6 7 Mean S.D

1. I could write syntactically correct
Java statements.

10
(3.5)

26
(9.0)

40
(13.8)

49
(17.0)

68
(23.5)

36
(12.5)

60
(20.8)

4.69 1.72

2. I could understand the language
structure of Java and the usage of
the reserved words.

14
(4.8)

19
(6.6)

37
(12.8)

46
(15.9)

52
(18.0)

66
(22.8)

55
(19.0)

4.79 1.78

3. I could write logically correct
blocks of code using Java

18
(6.2)

26
(9.0)

40
(13.8)

35
(12.1)

67
(23.2)

51
(17.6)

52
(18.0)

4.62 1.80

4. I could write a Java program that
displays a greeting message.

15
(5.2)

15
(5.2)

11
(3.8)

26
(9.0)

33
(11.4)

55
(19.0)

134
(46.4)

5.59 1.80

5. I could write a Java program that
computes the average of three
numbers.

11
(3.8)

14
(4.8)

19
(6.6)

30
(10.4)

32
(11.1)

56
(19.4)

127
(43.9)

5.54 1.76

6. I could write a Java program that
computes the average of any given
number of numbers

15
(5.2)

19
(6.6)

23
(8.0)

28
(9.7)

88
(30.4)

25
(8.7)

91
(31.5)

5.06 1.79

7. I could use built-in functions that
are available in the various Java
applets.

54
(18.7)

37
(12.8)

48
(16.6)

50
(17.3)

49
(17.0)

21
(7.3)

30
(10.4)

3.64 1.91

8. I could build my own Java applets. 84
(29.1)

50
(17.3)

55
(19.0)

28
(9.7)

31
(10.7)

19
(6.6)

22
(7.6)

3.06 1.92

9. I could write a small Java program
given a small problem that is
familiar to me.

25
(8.7)

21
(7.3)

22
(7.6)

85
(29.4)

34
(11.8)

36
(12.5)

66
(22.8)

4.57 1.87

10. I could write a reasonably sized
Java program that can solve a
problem that is only vaguely
familiar to me.

33
(11.4)

29
(10.0)

40
(13.8)

55
(19.0)

65
(22.5)

29
(10.0)

38
(13.1)

4.14 1.84

11 I could write a long and complex
Java program to solve any given
problem as long as the
specifications are clearly defined.

46
(15.9)

29
(10.0)

37
(12.8)

66
(22.8)

45
(15.6)

36
(12.5)

30
(10.4)

3.91 1.89

12. I can organize and design my
program in a modular manner.

51
(17.6)

36
(12.5)

35
(12.1)

50
(17.3)

57
(19.7)

40
(13.8)

20
(6.9)

3.78 1.88

13. I understand the object-oriented
paradigm.

26
(9.0)

27
(9.3)

41
(14.2)

57
(19.7)

55
(19.0)

46
(15.9)

37
(12.8)

4.29 1.80

14. I can identify the objects in the
problem domain and declare,
define, and use them.

19
(6.6)

35
(12.1)

30
(10.4)

68
(23.5)

43
(14.9)

43
(14.9)

51
(17.6)

4.43 1.83

RESULTS

Research Question One: What are the measures of Self-efficacy in JAVA programming possessed

by computer undergraduates?

Table 1: Student's Self-Efficacy in JAVA Programming

11 AJB-SDR Vol. 1, No 1, 2019

15. I can make use of a pre-written
function, given a clearly labeled
declaration of the function.

27
(9.3)

26
(9.0)

32
(11.1)

62
(21.5)

51
(17.6)

56
(19.4)

35
(12.1)

4.36 1.80

16. I can make use of a class that is
already defined, given a clearly
labeled declaration4.39 of the class.

21
(7.3)

27
(9.3)

35
(12.1)

62
(21.5)

50
(17.3)

45
(15.6)

49
(17.0)

4.47 1.81

17. I can debug (correct all the errors) a
long and complex program that I
had written and make it work.

23
(8.0)

28
(9.7)

34
(11.8)

66
(22.8)

42
(14.5)

57
(19.7)

39
(13.5)

4.39 1.80

18. I can comprehend a long, complex
multi-file program.

37
(12.8)

41
(14.2)

24
(8.3)

67
(23.2)

47
(16.3)

46
(15.9)

27
(9.3)

4.01 1.86

19. I could complete a programming
project if someone showed me how
to solve the problem first.

23
(8.0)

18
(6.2)

34
(11.8)

63
(21.8)

44
(15.2)

57
(19.7)

50
(17.3)

4.58 1.80

20. I could complete a programming
project if I had only the language
reference manual for help.

24
(8.3)

29
(10.0)

29
(10.0)

52
(18.0)

61
(21.1)

57
(19.7)

37
(12.8)

4.44 1.79

21. I could complete a programming
project if I could call someone for
help if I got stuck.

19
(6.6)

16
(5.5)

25
(8.7)

61
(21.1)

59
(20.4)

51
(17.6)

58
(20.1)

4.76 1.74

22. I could complete a programming
project once someone else helped
me get started.

19
(6.6)

24
(8.3)

35
(12.1)

64
(22.1)

42
(14.5)

63
(21.8)

42
(14.5)

4.54 1.77

23. I could complete a programming
project if I had a lot of time to
complete the program.

18
(6.2)

20
(6.9)

20
(6.9)

56
(19.4)

49
(17.0)

60
(20.8)

66
(22.8)

4.88 1.79

24. I could complete a programming
project if I had just the built-in help
facility for assistance.

23
(8.0)

18
(6.2)

39
(13.5)

69
(23.9)

43
(14.9)

55
(19.0)

42
(14.5)

4.47 1.76

25. I could find ways of overcoming
the problem if I got stuck at a point
while working on a programming
project.

28
(9.7)

30
(10.4)

38
(13.1)

70
(24.2)

50
(17.3)

42
(14.5)

31
(10.7)

4.16 1.77

26. I could come up with a suitable
strategy for a given programming
project in a short time.

33
(11.4)

41
(14.2)

33
(11.4)

71
(24.6)

52
(18.0)

34
(11.8)

25
(8.7)

3.93 1.77

27. I could manage my time efficiently
if I had a pressing deadline on a
programming project

30
(10.4)

30
(10.4)

29
(10.0)

91
(31.5)

48
(16.6)

43
(14.9)

18
(6.2)

4.03 1.67

28. I could mentally trace through the
execution of a long, complex,
multi-file program given to me.

50
(17.3)

33
(11.4)

22
(7.6)

69
(23.9)

38
(13.1)

50
(17.3)

27
(9.3)

3.93 1.94

12 AJB-SDR Vol. 1, No 1, 2019

29. I could rewrite lengthy confusing
portions of code to be more
readable and clear.

42
(14.5)

33
(11.4)

36
(12.5)

56
(19.4)

47
(16.3)

41
(14.2)

34
(11.8)

4.01 1.92

30. I can find a way to concentrate on
my program, even when there were
many distractions around me.

35
(12.1)

29
(10.0)

31
(10.7)

58
(20.1)

48
(16.6)

44
(15.2)

44
(15.2)

4.26 1.92

31 I can find ways of motivating
myself to program, even if the
problem area was of no interest to
me.

32
(11.1)

25
(8.7)

25
(8.7)

53
(18.3)

60
(20.8)

47
(16.3)

47
(16.3)

4.43 1.89

32 I could write a program that
someone else could comprehend
and add features to at a later date.

28
(9.7)

25
(8.7)

34
(11.8)

43
(14.9)

66
(22.8)

49
(17.0)

44
(15.2)

4.66 4.45

Table 1 displayed the measures of undergraduate
computer science students' self-efficacy in
various JAVA programming tasks. The table
showed that the undergraduate computer
students are confident in some JAVA
programming tasks, not confident in some and
moderately confident in some . This is evident
from the percentages and means obtained in
their self-efficacy in various tasks.

For the first categories, their means are above
4.00 while their percentages for fairly confident,
mostly confident and absolutely confident put
together were above 50.0%. These include the
following tasks: (i) Writing syntactically correct
JAVA statements; (ii) Understanding the
language structure of JAVA and the usage of
reserved words; (iii) Writing logically correct
blocks of code using JAVA; (iv) Writing a JAVA
program that displays a greeting message; (v)
Writing a JAVA program that computes the
average of three numbers tasks recorded. The
five (5) tasks listed above that the students
appeared to be confident in were all simple tasks.
Aside simple tasks, the measures in the table
above also showed that they were confident in
tasks that they received assistance. These
include items 19-21 which are as follows: (i)
Completing a programming project if someone
showed how to solve the problem first; (ii)
Completing a programming project if he/she had
only the language reference manual for help;
(iii) Completing a programming project if
he/she could call someone for help when stuck.

The result also showed that the students showed
confidence in JAVA programming tasks when
they have enough time for the tasks. This is
evident in their responses to items 23 as follows:
(i) completing a programming project if they had
a lot of time to complete the project. In
conclusion, the students were confident in tasks
that are either simple, done when help is
available or done when enough time is given for
completion.

The result of the percentages and means also
showed that students did not show adequate
confidence in fairly difficult tasks and when they
have a short time to deliver. In all of these tasks,
their means were less than 4.00 and their
percentages for fairly, mostly and absolutely
confident put together were below 50.0%. The
tasks for fairly difficult tasks include: (i) Using
built-in functions that are available in various
JAVA applets; (ii) Building their own JAVA
applets; (iii) Writing a reasonably sized JAVA
program that can solve a problem that is only
vaguely familiar; (iv) Writing a long and
complex JAVA program to solve any given
problem as long as the specifications are clearly
defined. They also showed lack of adequate
confidence in tasks that require a short period of
time to complete. Such tasks include items 26
and 27 as follows: (i) Coming up with a suitable
strategy for a given programming project in a
short time; (ii) Managing their time efficiently if
they had pressing deadline on a programming
project.

Key: 1-Not at all confident; 2-Mostly not confident; 3-Slightly confident; 4-50/50; 5-Fairly confident;
 6-Mostly confident; 7-Absolutely confident

13 AJB-SDR Vol. 1, No 1, 2019

Research Question Two: What type of
relationship exist among background in C++,the
number of programming courses taken before
entering Java programming class, type of
institution and Self-efficacy in Java
programming?

Table 2: Inter correlation Matrix of the
i n d e p e n d e n t v a r i a b l e s a n d J a v a
programming self-efficacy

From table 2, it can be observed that all the
relationships between the three independent
variables and Self-Efficacy in JAVA
programming are positive and statistically
significant at p < .05. The table shows that Self-
Efficacy in JAVA programming has positive
relationship with background in C++, number of
programming courses and Institution type. The
Institution type has the highest relationship (r =
0.431, p < .05) with Self-Efficacy in Java
programming. This is followed by background
in C++ (r = 0.350, p < .05) while number of
programming courses has the least (r = 0.266, p
< .05). All the relationships are also statistically
significant.

Research Question Three: How much of the
variance in Self-efficacy in Java programming
possessed by computer undergraduates is
accounted for by all of background in C++, the
number of programming courses taken before
entering Java programming class and the type of
institution?

Table 3a:Multiple Regression of the
Independent Variables on Self-efficacy in
Java programming

a Predictors: (Constant), background in C++, the
number of programming courses taken before
entering Java programming class and type of
institution

Table 3b: Multiple Regression ANOVA for
JAVA Programming Self-Efficacy

a Predictors: (Constant), background in C++, the
number of programming courses taken before
entering Java programming class and type of
institution

b Dependent variable: JAVA programming Self-Efficacy
score

Table 3 presents the multiple regression of the
independent variables (background in
C++,numberof programming courses taken
before entering Java programming class and
type of institution) and dependent variable (Self-
Efficacy in Java programming) among computer
science undergraduates. The multiple regression
coefficient (R) showing the linear relationship
between the three independent variables
(background in C++, the number of
programming courses taken before entering
Java programming class and type of institution)
and dependent variable (Self-Efficacy in Java
programming) among computer undergraduates
is 0.18. The adjusted R square value is 0.02; this
implies that the variation in Java programming

Parameter Value

Multiple Regression 0.177a

R-Square 0.031

Adjusted R -Square

0.020

Standard Error of Estimate

Sig (two-tailed)

15.417

0.047

Model Sum of

Squares

Df Mean

Square

F Sig (2-tailed)

Regression 130327.509 3 43442.503 27.790 0.000

Residue 390804.621

250 1563.218

 Total 521132.132 253

Var X1 X2 X3 X4
 X1 1.000

X2 0.208* 1.000
X3 0.628* 0.292* 1.000
X4 0.350* 0.266* 0.431* 1.000
Mean 1.60 1.63 1.24 139.55
SD 0.49 1.05 0.26 44.15

 Key: X1 = Background In C++; X2 = Number of
 Programming Course; X3 – Institution Type;
 X4 = Java Programming Self Efficacy Scores * P < .05

14 AJB-SDR Vol. 1, No 1, 2019

self-efficacy accounted for by the stated
independent variables (background in C++,
the number of programming courses taken
before entering Java programming class and the
type of institution) when combined, among
computer undergraduates was 2.0 %.

Further verification using multiple regression
ANOVA produced F-ratio = 2.686, p < .05. This
implies that there is a significant linear
relationship between the identified independent
variables (background in C++, the number of
programming courses taken before entering
Java programming class and the type of
institution) and Self-Efficacy in Java
programming.

Research Question Four: How much of the
variance in Self-efficacy in Java programming
possessed by computer undergraduates is
accounted for by each of background in C++, the
number of programming courses taken before
entering Java programming class and the type of
institution?

Table 4: Coefficients Indicating Relative
Effects of the identified Independent
Variables and Java programming self-
efficacy among computer undergraduates

 Unstandardized
Coefficients

Standardized
Coefficient

Model Β Std.
error

Beta t Sig. Remark

Constant 0.929 7.003

0.133 0.895

INS 3.553 2.999 0.097 1.185 0.237 NS

BCPP 5.039 2.540 0.159 1.984 0.048 S

NPCS 1.153 0.580 0.129 1.988 0.048 S

a Dependent variable: Java programming self-efficacy

S: significant at 0.05 alpha levels; N.S: Not

Significant at 0.05 alpha levels

Table 4 gives the individual contributions of the
identified independent variables (background in
C++ the,number of programming courses taken
before entering Java programming class and
type of institution) to the dependent variable
(Self-efficacy in Java programming) among

computer undergraduates. Background in
C++ cont r ibu ted the mos t to Java
programming self-efficacy (B= 0.159; t =
1.984; p < .05). This is followed by that of
number of programming courses taken before
entering Java class (B= 0.129; t = 1.988; p < .05).
The contribution of institution type was positive
but insignificant (r = 0.095, t = 1.185; p > .05).

Discussion
Self-efficacy in JAVA programming possessed
by computer science undergraduates was found
in this study to be above average but with
moderately high standard deviation. This
suggests that there is room for improvement and
also there is the need to work towards boosting
the self-efficacy of some of the undergraduates.

Background in C++ related positively and
significantly to Java programming self-efficacy.
The implication is that those that had experience
with CPP had higher self-efficacy in their ability
to program using Java. This is in agreement with
Sconberg and Dewar (2008) that argued that
Java should not be introduced as an introductory
programming course. It is also noteworthy that
Java is an offshoot of C++, therefore it is
reasonable to conclude that experience in C++
would boost their self-efficacy in Java
programming.

Number of programming courses also related
posi t ively and signif icantly to Java
programming self-efficacy. Jegede (2009) found
that Self-efficacy in Java programming has no
significant relationship with the number of
programming courses taken. He however
established that the number of programming
courses offered by students significantly
predicted their Java programming self-efficacy.
Both studies established that number of
programming courses predicts self-efficacy but
disagrees on relationship between the two
variables. This contrast could be a result of the
differences in the participants of the two studies.
For Jegede (2009), engineering undergraduates
from one university participated while in the
current study, computer undergraduates across a
geopolitical zone were participants.
Institutional type was also found to relate
posi t ively and signif icantly to Java

15 AJB-SDR Vol. 1, No 1, 2019

programming self-efficacy. This is in agreement
with Gafoor (2012); Bututcha (2013) and Capa
(2005). A study carried out by Gafoor (2012) on
the influence of school-image on academic self-
efficacy, findings showed that Private secondary
schools had significantly higher self-efficacy
when compared with their counterparts in public
secondary schools. Bututcha (2013) in a related
study, found beginning teachers in private
schools to be more self-efficacious in
instructional strategies as well as overall self-
efficacy when compared with their counterparts
in the public schools. The possible reason for the
above trend could be because the class size in
private schools is smaller compared to the ones
in public schools. Capa (2005), in another study
found a similar result. This could be because of
smaller class size in private than public
secondary schools in Ethiopia.

Conclusion

The level of self-efficacy possessed by the
computer undergraduates, though above
average, should be improved upon. The
predictor variables (Background in C++,
number of programming courses taken before
entering the Java class and institution type)
related positively and significantly to Java
programming self-efficacy. Number of
programming courses and institution type also
significantly predicted Self-efficacy in Java
programming.

Recommendation:

The following recommendations were made:
(i) Background in C++ was found to relate
significantly with JAVA programming self-
efficacy score, therefore C++ programming
language should be made a prerequisite for Java
Programming course.
(ii) Number of programming courses related
significantly with JAVA programming self-
efficacy scores, more relevant programming
courses should be included in the curriculum of
semesters preceding the semester when Java
Programming is to be taught.
(iii) Computer departments in federal
government-owned institutions should improve
on the instructional modes in Java Programming

class towards enhancing the rise in computer
undergraduates' self-efficacy.

References
Askar, P., & Davenport, D. (2009). An

investigation of factors related to self-
efficacy for Java Programming among
engineering students. Turkish Online
Journal of Education Technology 8 (1),
26-32.

Bandura, A. (1977). Self-efficacy: Towards a
unifying theory of behaviour.
Psychological Review, 84 (2), 191-215.
Retrieved from
http//www.ncbi.nih.gov/pubmed/847064
.

Bandura, A. (1986). Social foundation of
thought and actions: A social cognitive
theory. Englewood cliffs, New Jersey:
Prentice Hall.

Bandura, A.(1996). Assessing self-efficacy
beliefs and academic outcome: The case
for specific city and correspondence. A
paper presented at the annual meeting of
the American Educational Research
Association, New York, NY.

Beas, M. I., & Salanova, M. (2006). Self-
efficacy beliefs, computer training and
psychological well being among
Information and Communication
Technology workers. Computers in
Human Behaviour, 22, 1043-1058.

Askar, P., & Davenport, D. (2009). An
investigation of factors related to self-
efficacy for Java Programming Among
Engineering Students. Turkish Online
Journal of Education Technology 8 (1),
pp 26-32.

Bandura, A. (1977). Self-efficacy: Towards a
Unifying Theory of behaviour.
Psychological Review, 84 (2), 191-215.
Retrieved from the World Wide
web:http//www.ncbi.nih.gov/pubmed/8
47064.

16 AJB-SDR Vol. 1, No 1, 2019

Bandura, A. (1986). Social foundation of
thought and actions: A social cognitive
theory. Englewood cliffs, New Jersey:
Prentice Hall.

Bandura, A (1996). Assessing self-efficacy
beliefs and academic outcome: The case
for specific city and correspondence. A
paper presented at the annual meeting of
the American Educational Research
Association, New York, NY.

Beas, M.I and Salanova, M (2006). Self-
efficacy beliefs, computer training and
psychological well being among
Information and Communication
Technology Workers. Computers in
Human Behaviour, 22, 10431058.

Bututcha K. G. (2013). Gender and school type
differences in self-efficacy in teaching.
Sky Journal of Educational Research
(4), 23 - 31, Available online
http://www.skyjournals.org/SJERhttps:
//www.spsstests.com/2015/02/how-to-test-
validity-questionnaire.html

Capa, Y. (2005). Factors influencing first-year
teachers' sense of efficacy. Unpublished
doctoral dissertation, The Ohio State
University, Retrieved November 2,
2008, from
http://www.ohiolink.edu/etd/send-
pdf.cgi/199apa%20Yesim.pdf?acc
_num=osu1110229553.

Cassidy, S. & Eachus, P. 2002. Developing the
Computer User Self-Efficacy (CSUE)
Scale: Investigating the relationship
between Computer Self-efficacy,
Gender and Experience with Computers.
Educational Computing Research, 26
(2), 133-153.

Gafoor, A. K. (2012) Influence of school-image
on academic self efficacy beliefs.
Innovations and Researches in
Education 2(1), 51-58.

Hassan, B. (2003). The influence of specific
computer experiences on computer
self efficacy beliefs. Computers in
Human Behaviours, 19, 443-450.

Jegede, P. O. (2009). Predictors of Java
Programming self-Efficacy among
engineering Students in Nigeria
University. International Journal of
Computer Science and Information
security (IJCSIS), available at
http:/site.google.com/site/ijcsis/ 4 (1 & 2).

Jenkins, T. (2001). The motivation of students o f
programming. A Thesis Submitted to
the University of Kont at Canterbury in
the Subject of Computer Science for the
degree of Master of Science, (1- 5)

Ramalingam, V., & Wiedenbeck, S. (1998).
Development and Validation of Scores
on a Computer Programming Self-
efficacy Scale and Group Analysis of
Novice Programmer Self-efficacy.
Journal of Educational Computing
Research, 19 (4), 367-381.

Ramalingam, V., LaBelle, D., and Wiedenbeck,
S. (2004). Self-efficacy and mental

th
models in learning to program. The 9
Annual SIGCSE conference on
Innovation and Technology in Computer
Science. Leeds, United Kingdom, pg
171-175.

Schwarzer, B. (2004). General Perceived Self-
Efficacy in 14 cultures “user page
fuberlin.de/~ health/selfscal.htm.

Sconberg, E. & Dewar, R. (2008). A principled
Approach to Software Engineering
Education or JAVA considered harmful.
Ada User Journal, 29(3).

17 AJB-SDR Vol. 1, No 1, 2019

